Table Of Contents
Table Of Contents

pad

mxnet.ndarray.pad(data=None, mode=_Null, pad_width=_Null, constant_value=_Null, out=None, name=None, **kwargs)

Pads an input array with a constant or edge values of the array.

Note

Pad is deprecated. Use pad instead.

Note

Current implementation only supports 4D and 5D input arrays with padding applied only on axes 1, 2 and 3. Expects axes 4 and 5 in pad_width to be zero.

This operation pads an input array with either a constant_value or edge values along each axis of the input array. The amount of padding is specified by pad_width.

pad_width is a tuple of integer padding widths for each axis of the format (before_1, after_1, ... , before_N, after_N). The pad_width should be of length 2*N where N is the number of dimensions of the array.

For dimension N of the input array, before_N and after_N indicates how many values to add before and after the elements of the array along dimension N. The widths of the higher two dimensions before_1, after_1, before_2, after_2 must be 0.

Example:

x = [[[[  1.   2.   3.]
       [  4.   5.   6.]]

      [[  7.   8.   9.]
       [ 10.  11.  12.]]]


     [[[ 11.  12.  13.]
       [ 14.  15.  16.]]

      [[ 17.  18.  19.]
       [ 20.  21.  22.]]]]

pad(x,mode="edge", pad_width=(0,0,0,0,1,1,1,1)) =

      [[[[  1.   1.   2.   3.   3.]
         [  1.   1.   2.   3.   3.]
         [  4.   4.   5.   6.   6.]
         [  4.   4.   5.   6.   6.]]

        [[  7.   7.   8.   9.   9.]
         [  7.   7.   8.   9.   9.]
         [ 10.  10.  11.  12.  12.]
         [ 10.  10.  11.  12.  12.]]]


       [[[ 11.  11.  12.  13.  13.]
         [ 11.  11.  12.  13.  13.]
         [ 14.  14.  15.  16.  16.]
         [ 14.  14.  15.  16.  16.]]

        [[ 17.  17.  18.  19.  19.]
         [ 17.  17.  18.  19.  19.]
         [ 20.  20.  21.  22.  22.]
         [ 20.  20.  21.  22.  22.]]]]

pad(x, mode="constant", constant_value=0, pad_width=(0,0,0,0,1,1,1,1)) =

      [[[[  0.   0.   0.   0.   0.]
         [  0.   1.   2.   3.   0.]
         [  0.   4.   5.   6.   0.]
         [  0.   0.   0.   0.   0.]]

        [[  0.   0.   0.   0.   0.]
         [  0.   7.   8.   9.   0.]
         [  0.  10.  11.  12.   0.]
         [  0.   0.   0.   0.   0.]]]


       [[[  0.   0.   0.   0.   0.]
         [  0.  11.  12.  13.   0.]
         [  0.  14.  15.  16.   0.]
         [  0.   0.   0.   0.   0.]]

        [[  0.   0.   0.   0.   0.]
         [  0.  17.  18.  19.   0.]
         [  0.  20.  21.  22.   0.]
         [  0.   0.   0.   0.   0.]]]]

Defined in src/operator/pad.cc:L766

Parameters:
  • data (NDArray) – An n-dimensional input array.
  • mode ({'constant', 'edge', 'reflect'}, required) – Padding type to use. “constant” pads with constant_value “edge” pads using the edge values of the input array “reflect” pads by reflecting values with respect to the edges.
  • pad_width (Shape(tuple), required) – Widths of the padding regions applied to the edges of each axis. It is a tuple of integer padding widths for each axis of the format (before_1, after_1, ... , before_N, after_N). It should be of length 2*N where N is the number of dimensions of the array.This is equivalent to pad_width in numpy.pad, but flattened.
  • constant_value (double, optional, default=0) – The value used for padding when mode is “constant”.
  • out (NDArray, optional) – The output NDArray to hold the result.
Returns:

out – The output of this function.

Return type:

NDArray or list of NDArrays