Table Of Contents
Table Of Contents

mxnet.optimizer.Adamax

class mxnet.optimizer.Adamax(learning_rate=0.002, beta1=0.9, beta2=0.999, **kwargs)[source]

The AdaMax optimizer.

It is a variant of Adam based on the infinity norm available at http://arxiv.org/abs/1412.6980 Section 7.

The optimizer updates the weight by:

grad = clip(grad * rescale_grad + wd * weight, clip_gradient)
m = beta1 * m_t + (1 - beta1) * grad
u = maximum(beta2 * u, abs(grad))
weight -= lr / (1 - beta1**t) * m / u

This optimizer accepts the following parameters in addition to those accepted by Optimizer.

Parameters
  • beta1 (float, optional) – Exponential decay rate for the first moment estimates.

  • beta2 (float, optional) – Exponential decay rate for the second moment estimates.

__init__(learning_rate=0.002, beta1=0.9, beta2=0.999, **kwargs)[source]

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([learning_rate, beta1, beta2])

Initialize self.

create_optimizer(name, **kwargs)

Instantiates an optimizer with a given name and kwargs.

create_state(index, weight)

Creates auxiliary state for a given weight.

create_state_multi_precision(index, weight)

Creates auxiliary state for a given weight, including FP32 high precision copy if original weight is FP16.

register(klass)

Registers a new optimizer.

set_learning_rate(lr)

Sets a new learning rate of the optimizer.

set_lr_mult(args_lr_mult)

Sets an individual learning rate multiplier for each parameter.

set_lr_scale(args_lrscale)

[DEPRECATED] Sets lr scale.

set_wd_mult(args_wd_mult)

Sets an individual weight decay multiplier for each parameter.

update(index, weight, grad, state)

Updates the given parameter using the corresponding gradient and state.

update_multi_precision(index, weight, grad, …)

Updates the given parameter using the corresponding gradient and state.

Attributes

learning_rate

opt_registry