Table Of Contents
Table Of Contents


class mxnet.metric.TopKAccuracy(top_k=1, name='top_k_accuracy', output_names=None, label_names=None)[source]

Computes top k predictions accuracy.

TopKAccuracy differs from Accuracy in that it considers the prediction to be True as long as the ground truth label is in the top K predicated labels.

If top_k = 1, then TopKAccuracy is identical to Accuracy.

  • top_k (int) – Whether targets are in top k predictions.
  • name (str) – Name of this metric instance for display.
  • output_names (list of str, or None) – Name of predictions that should be used when updating with update_dict. By default include all predictions.
  • label_names (list of str, or None) – Name of labels that should be used when updating with update_dict. By default include all labels.


>>> np.random.seed(999)
>>> top_k = 3
>>> labels = [mx.nd.array([2, 6, 9, 2, 3, 4, 7, 8, 9, 6])]
>>> predicts = [mx.nd.array(np.random.rand(10, 10))]
>>> acc = mx.metric.TopKAccuracy(top_k=top_k)
>>> acc.update(labels, predicts)
>>> print acc.get()
('top_k_accuracy', 0.3)
__init__(top_k=1, name='top_k_accuracy', output_names=None, label_names=None)[source]

Initialize self. See help(type(self)) for accurate signature.


__init__([top_k, name, output_names, …]) Initialize self.
get() Gets the current evaluation result.
get_config() Save configurations of metric.
get_global() Gets the current global evaluation result.
get_global_name_value() Returns zipped name and value pairs for global results.
get_name_value() Returns zipped name and value pairs.
reset() Resets the internal evaluation result to initial state.
reset_local() Resets the local portion of the internal evaluation results to initial state.
update(labels, preds) Updates the internal evaluation result.
update_dict(label, pred) Update the internal evaluation with named label and pred