Table Of Contents
Table Of Contents

mxnet.metric.PearsonCorrelation

class mxnet.metric.PearsonCorrelation(name='pearsonr', output_names=None, label_names=None)[source]

Computes Pearson correlation.

The pearson correlation is given by

\[\frac{cov(y, \hat{y})}{\sigma{y}\sigma{\hat{y}}}\]
Parameters
  • name (str) – Name of this metric instance for display.

  • output_names (list of str, or None) – Name of predictions that should be used when updating with update_dict. By default include all predictions.

  • label_names (list of str, or None) – Name of labels that should be used when updating with update_dict. By default include all labels.

Examples

>>> predicts = [mx.nd.array([[0.3, 0.7], [0, 1.], [0.4, 0.6]])]
>>> labels   = [mx.nd.array([[1, 0], [0, 1], [0, 1]])]
>>> pr = mx.metric.PearsonCorrelation()
>>> pr.update(labels, predicts)
>>> print pr.get()
('pearson-correlation', 0.42163704544016178)
__init__(name='pearsonr', output_names=None, label_names=None)[source]

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([name, output_names, label_names])

Initialize self.

get()

Gets the current evaluation result.

get_config()

Save configurations of metric.

get_global()

Gets the current global evaluation result.

get_global_name_value()

Returns zipped name and value pairs for global results.

get_name_value()

Returns zipped name and value pairs.

reset()

Resets the internal evaluation result to initial state.

reset_local()

Resets the local portion of the internal evaluation results to initial state.

update(labels, preds)

Updates the internal evaluation result.

update_dict(label, pred)

Update the internal evaluation with named label and pred