Table Of Contents
Table Of Contents

mx.symbol.Embedding

Description

Maps integer indices to vector representations (embeddings).

This operator maps words to real-valued vectors in a high-dimensional space, called word embeddings. These embeddings can capture semantic and syntactic properties of the words. For example, it has been noted that in the learned embedding spaces, similar words tend to be close to each other and dissimilar words far apart.

For an input array of shape (d1, …, dK), the shape of an output array is (d1, …, dK, output_dim). All the input values should be integers in the range [0, input_dim).

If the input_dim is ip0 and output_dim is op0, then shape of the embedding weight matrix must be (ip0, op0).

By default, if any index mentioned is too large, it is replaced by the index that addresses the last vector in an embedding matrix.

Example:

input_dim = 4
output_dim = 5

// Each row in weight matrix y represents a word. So, y = (w0,w1,w2,w3)
y = [[  0.,   1.,   2.,   3.,   4.],
[  5.,   6.,   7.,   8.,   9.],
[ 10.,  11.,  12.,  13.,  14.],
[ 15.,  16.,  17.,  18.,  19.]]

// Input array x represents n-grams(2-gram). So, x = [(w1,w3), (w0,w2)]
x = [[ 1.,  3.],
[ 0.,  2.]]

// Mapped input x to its vector representation y.
Embedding(x, y, 4, 5) = [[[  5.,   6.,   7.,   8.,   9.],
[ 15.,  16.,  17.,  18.,  19.]],

[[  0.,   1.,   2.,   3.,   4.],
[ 10.,  11.,  12.,  13.,  14.]]]

The storage type of weight can be either row_sparse or default.

Note

If “sparse_grad” is set to True, the storage type of gradient w.r.t weights will be “row_sparse”. Only a subset of optimizers support sparse gradients, including SGD, AdaGrad and Adam. Note that by default lazy updates is turned on, which may perform differently from standard updates. For more details, please check the Optimization API at: https://mxnet.incubator.apache.org/api/python/optimization/optimization.html

Usage

mx.symbol.Embedding(...)

Arguments

Argument

Description

data

NDArray-or-Symbol.

The input array to the embedding operator.

weight

NDArray-or-Symbol.

The embedding weight matrix.

input.dim

int, required.

Vocabulary size of the input indices.

output.dim

int, required.

Dimension of the embedding vectors.

dtype

{‘float16’, ‘float32’, ‘float64’, ‘int32’, ‘int64’, ‘int8’, ‘uint8’},optional, default=’float32’.

Data type of weight.

sparse.grad

boolean, optional, default=0.

Compute row sparse gradient in the backward calculation. If set to True, the grad’s storage type is row_sparse.

name

string, optional.

Name of the resulting symbol.